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Abstract. The substitutionally disordered nature of gallogermanates creates a distribution of
crystal-field strengths and symmetries for Cr3+ dopant ions. This causes the Huang–Rhys
factor of the4T2 → 4A2 transition to vary from site to site, leading to a strongly broadened
luminescence band. This luminescence is blue-shifted and strongly quenched with increasing
temperature. Calculations show that this behaviour is due to large variations in the internal
conversion rates for ions in different parts of the crystal-field distribution. It is shown that a
confinement potential rather than a harmonic potential is required to account for the data.

1. Introduction

The optical properties of Cr3+ impurity ions have proved to be highly compatible with
the parameters required for use as laser gain media, most recently in tunable and ultra-
short-pulse all-solid-state lasers such as those based on Cr3+-doped LiSrAlF6. Due to the
success of this and similar materials there is much interest in producing new gain media
with improved or alternative properties and therefore in understanding the fundamental
interactions that govern their behaviour. The Cr3+-doped gallogermanate crystals were
considered as candidates for broadly tunable laser action [1] as they are characterized by
very broad luminescence bands and appeared to offer tuning ranges significantly shifted
toward the infrared compared to most other hosts. Unfortunately, poor efficiencies and high
thresholds make them unsuccessful as laser gain media. This paper is an investigation of
non-radiative decay in the gallogermanates that is the underlying process responsible for
the material’s poor laser performance.

In previous papers that have investigated the broadening of both the R-line and broad-
band transitions of Cr3+ ions in gallogermanate crystals [2–4] it has been established that
low-symmetry distortions to the octahedron of oxygen ions that surround the optically
active ion are of great importance. That the distortions are unequal for Cr3+ ions occupying
ostensibly the same sites is due to the fact that some cation sites are occupied randomly by
Ga3+ and Ge4+ ions (though long-range stoichiometry is maintained). Such a crystal is said
to be substitutionally disordered. In the case of calcium gallogermanate (Ca3Ga2Ge4O14

or CGGO), which is the material chosen as a test case in this paper, the substitutionally
disordered site of most importance is the crystallographically labelled 3f site [4]. Six such
sites immediately surround the octahedron of oxygen ions that enclose the Cr3+ ion, thus
giving rise to 26 possible configurations. All 64 configurations are statistically equally
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Figure 1. (a) A configuration coordinate diagram of the weak-field-site Cr3+ ion. The ground
and the two excited electronic manifolds are presented in the diagram. Each curve corresponds
to a different site from the weak-field-sites distribution. (b) A configuration coordinate diagram
of the weak-field-site Cr3+ ion. In the diagram the ground,4A2, and the first excited,4T2,
electronic manifolds are shown. Dashed curves correspond to the harmonic lattice potential; solid
curves correspond to the confinement-type potentials (formula (13)), withα = 250, α = 300
andα = 350. All of the potentials presented in (b) were fitted to get the same emission and
absorption lineshape.

probable as the Ga3+ and Ge4+ ions are equally numerous in this centre, but charge-
compensation considerations are likely to cause combinations that are dominated by a single
ion to be less favoured.

One result of the variation of the local distortions of the Cr3+ environment is to
create two sets of strongly broadened fluorescence spectra. One set of sites fluoresces
via the2E→ 4A2, R-line transition and has been studied using fluorescence-line-narrowing
spectroscopy [2, 3]. These sites are not influenced by the effects of non-radiative decay
and are therefore not of interest here and will be ignored in what follows. Most of the
sites decay via the4T2→ 4A2 transition which is characterized by much stronger electron–
lattice coupling, resulting in broad-band emission. Of particular importance is the fact that
the electron–lattice coupling constant and therefore the4T2-state relaxation energy changes
from site to site resulting in broad distributions of these quantities throughout the crystal
[2]. The dependence of the4T2 → 4A2 emission lineshape on the excitation energy was
modelled, and it was found that a correlation exists between the relaxation energy of the4T2

state and the strength of the electron–lattice coupling, attributed to increasingly distorted
Cr3+ sites being more strongly coupled to asymmetric phonon modes [2]. This model
also showed that a contribution to the broadening is made by the variation in the actual
crystal-field strength, essentially determined by the size of the octahedron of oxygen ions
surrounding the Cr3+ ions, but that this is smaller than the influence of the site-to-site
variation in the Huang–Rhys parameter. This applies to all members of the gallogermanate
family regardless of the proximity of the substitutionally disordered site to the optically
active ion [3].

As the large electron–lattice coupling shifts the excited electronic manifolds in
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configuration space, non-radiative internal conversion processes become more likely to
occur, and this decreases the quantum efficiency of the system. In this paper the kinetics
of the non-radiative processes in the chromium sites in gallogermanates are analysed. It is
shown that the low quantum efficiency of the chromium-doped gallogermanates is due to the
domination of the non-radiative internal conversion process [5, 6], even at low temperatures.
Such a situation is directly connected to the existence of the relationship between the energy
of the 4T2 state and the electron–lattice coupling energy. Additionally, the non-radiative
processes are amplified by the effect of the confinement of the motion of the ions which
has to be taken into account for large ionic displacements.

In figure 1(a), a schematic distribution of the weak-field Cr3+ sites in a typical
gallogermanate, as determined previously [2], is presented. In the more distorted sites
the 4T2 electronic manifold is more strongly shifted in configuration coordinate space and
relaxes to lower energy. For these sites the crossing of the4T2 and4A2 configurations occurs
at a lower energy,Enr , with respect to the minimum of the4T2 state than is the case for
sites of higher symmetry. The maximum and minimum values ofEnr for the distribution
are indicated on figure 1(a) and vary by about an order of magnitude, despite the fact
that the minima of the potential wells vary by only about 40%. This is because of the duel
influence of the reduction in energy of the potential well and the shift in configuration space.
The probability of the non-radiative internal conversion process taking place thus increases
rapidly as the oxygen octahedron is deformed. Additional lowering of the energy,Enr , is
related to the confinement of the ionic motion. In figure 1(b) the configuration coordinate
diagram for a single Cr3+ site is presented. Lattice potentials have been approximated by
a harmonic potential (dashed curves) and three confined potentials with different values of
the confinement constant (solid curves), all of which correspond to a single ion having a
certain electronic energy. Detailed descriptions of the potentials and approximations are
given below, but it can be seen by inspection thatEnr is smaller for the confined potentials
than for the harmonic wells, thus increasing the non-radiative conversion rate in the former
case.

Using the ideas introduced above, this paper models the observed temperature
dependence of the decay characteristics of Cr3+-doped calcium gallogermanate, focusing on
the fluorescence quenching and blue-shift of the4T2→ 4A2 emission peak with increasing
temperature. The technique described is expected to be generally applicable and particularly
useful for disordered materials.

2. Experimental details

The sample was a piece of laser-quality Cr3+:CGGO and was mounted inside a Leybold
variable-temperature cold-head refrigerator. The temperature could be controlled between
10 K and room temperature. Fluorescence was excited by the output of an argon-ion-laser-
pumped dye laser with a linewidth of about 1 cm−1 operating at 600 nm. Emission was
dispersed by a 0.5 m monochromator and detected by a cooled germanium detector. The
laser was slowly chopped and the signal measured using a lock-in detector. The resulting
spectra were corrected for instrumental response.

3. Theory

In order to explain how the temperature-dependent fluorescence spectra have been modelled
it is first necessary to introduce a theoretical description of the environment of the Cr3+
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ion and the processes that determine whether a particular site will de-excite radiatively or
otherwise.

3.1. Non-radiative transitions and the distribution of emitting sites

The quantum efficiency,η, of the system is a quantity which is proportional to the fraction
of the sites contributing to the luminescence, and this varies with temperature. As the entire
population of ions decays either radiatively or non-radiatively,η is given by the ratio of
their respective probabilities,Prad andPn−rad :

η(T ) = Prad

Prad + Pn−rad(T ) . (1)

Radiative transitions take place independently of temperature, and so temperature-
dependent changes in the quantum efficiency must be related to non-radiative processes. In
principle,Pn−rad takes into account all of the non-radiative decay processes but the analysis
presented here assumes that by far the most important of these is internal conversion. A
detailed description of the internal conversion processes in localized states in solids has been
published previously [6, 7]. In this work an expression was derived for the probability,Wnm,
of a transition from a particular vibronic state,n, of the excited electronic manifold,4T2, to
that vibronic state,m, of the ground electronic manifold,4A2, that leaves the system with
the same energy:

Wnm = 2π

h̄h̄ω
|〈ϕ4T2

|H ′|ϕ4A2
〉|2|Fnm4T2

4A2
|2δ(En4T2

− Em4A2
). (2)

Here h̄ω is the phonon energy, whilst|〈ϕ4T2
|H ′|ϕ4A2

〉| and |Fnm4T2
4A2
| are, respectively, the

electronic matrix element and the overlap integral of the vibronic wave functions. The
Hamiltonian,H ′, mixes the electronic wave functions of the ground and excited states and
thus allows the non-radiative internal conversion process to take place. For the specific case
of interest here, that of the Cr3+ ion,H ′ is the spin–orbit interaction. This is non-vanishing
between the4A2 state and the08 component of the4T2 states [8, 9]:

|〈ϕ4T2
|H ′|ϕ4A2

〉| =
√

5/3ζ. (3)

The quantity ζ is known as the spin–orbit parameter and is equal to a few hundred
wavenumbers (cm−1) with a weak dependence on the crystal host. Practically, it is preferable
to work with the frequency factor,f :

f = 2π

h̄h̄ω
|〈ϕ4T2

|H ′|ϕ4A2
〉|2. (4)

An accurate calculation of the spin–orbit parameter from first principles is not possible, but
its value can be estimated from experimental evidence in this and related materials. The
frequency factor can therefore also be estimated but, as the vibronic overlap integral can
be accurately calculated, the frequency factor can be treated as a free parameter, limited
within a certain physically realistic range. In this way, calculations using different models
for the potential can be made and the frequency factor optimized to fit the data. If the
frequency factor required is physically unrealistic then the model for the potential used
in that calculation can be dismissed. It is also possible that the4T2 → 4A2 states are
mixed by the lattice distortion of t1 symmetry. Thus an additional non-radiative channel
can depopulate the excited state. However, since the dominant modes in the electron–lattice
coupling are the full symmetrical mode and two-dimensional e mode (which do not mix
the T2 and A2 states), this additional channel, whilst possibly increasing the probability of
internal conversion, is not the dominant non-radiative process.



Non-radiative transitions in gallogermanate crystals 2819

The vibronic overlap integrals are given by

|Fnm4T2
4A2
| = |〈χn4T2

|χm4A2
〉|. (5)

This expression effectively gives all of the information about the probabilities of internal
conversion between the different vibronic states and implies the temperature dependence
of the non-radiative transitions, as the frequency factor is a constant for a given pair
of electronic manifolds. The temperature-dependent total probability of the non-radiative
process is obtained by summation over all possible transitions:

Pn−rad(T ) =
∞∑
n=0

Bn(T )W
nm (6)

where

Bn(T ) = exp

(
−E

n − E0

kT

)/∑
m

exp

(
−E

m − E0

kT

)
(7)

is the Boltzmann occupation factor,En andE0 are the energies of the respective vibronic
states of the excited electronic manifold, andk is the Boltzmann constant.

Approaches where the overlap integrals have been calculated explicitly have been used
by Struck and Fonger using the one-dimensional harmonic oscillator approximation [10, 11].
The two-dimensional case has been considered by Grinberg and Mandelis [7]. The nature
of the electron–phonon coupling is complicated by the fact that the localized d electrons can
interact with different lattice vibration modes (the ionic displacements which transform as
the irreducible representation of the respective point group). For a system with Oh symmetry
the electrons in the electronic state T2 can interact with the fully symmetrical a1 mode, the
two-dimensional e mode, and the three-dimensional t2 mode. Interaction with the a1 mode
causes only lattice relaxation, but on interaction with the e and t2 modes a splitting also
results. The latter are known as the Jahn–Teller T∗ e and T∗ t2 effects. Thus energy
relaxation in the excited state can result from coupling to any of the three modes, whilst
the configuration coordinate of the minimum of the excited state is shifted to a position
defined by then-dimensional vectorQ = {Q1,Q2, . . .Qn}, where eachQn corresponds to
the component (or coordinate) of the respective normal mode. The energy relaxation is thus
given by

Sh̄ω = 1

2

∑
i

kiQ
2
i

whereki is the elastic constant related to theith shift. The static Jahn–Teller effect splits the
electronic manifold into three and four equivalent paraboloids for T∗e and T∗t2 respectively,
but as far as emission and excitation band-shapes are concerned they are indistinguishable
from coupling to the symmetric mode, a1. It is normally thought that coupling to the a1

mode dominates in the case of octahedrally coordinated Cr3+ ions such as in garnets where
the lattice relaxation energy is about 1500 cm−1. For gallogermanates,Sh̄ω varies from site
to site but is typically twice this value, and so it is expected that the Jahn–Teller coupling
energy is significant, though it cannot be evaluated. However, it has been shown that the
interaction with all of the phonon modes can be described by interaction with one effective
mode [12] and that an effective coordinate given by

Qeff =
√∑

i

kiQ
2
i
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can be defined. This is the approach taken here, and it has already been used, for instance,
in figure 1 above. In fact, this is the only approach that is reasonable for such a complex
modelling problem.

Since the probability of internal conversion,Pn−rad , depends on the energy and the
position of the minimum of the excited electronic manifold, the quantum efficiency of the
system also depends on these quantities according to equation (1). This means that sites
from different parts of the distribution have different emission characteristics. Sites in the
high- and low-energy wings of the distribution will decay almost exclusively radiatively
and non-radiatively respectively. Those in between will show intermediate behaviour with
a strong temperature dependence.

The effective ‘emission distribution’,2em, is responsible for the emission lineshape and
is related to the distribution of the excited sites,2exc, thus:

2em(Eexc, E4T2
, T ) = 2exc(Eexc, E4T2

)η(E4T2
, T ). (8)

HereEexc andE4T2
are the excitation energy and the energy of the minimum of the4T2

electronic manifold. Since the quantum efficiency,η, depends on temperature, changes in
2em are also expected, in particular a shift of the maximum of the effective distribution,
2em, to higher energy with increasing temperature. The prediction is therefore not only of
emission quenching but also of a shift of the emission band toward higher energy. This effect
has been observed experimentally for all of the gallogermanates investigated, as discussed
below.

3.2. Calculations of the emission spectrum

The main parameter that will be used to compare experiment and theory for4T2→ 4A2 in
what follows is the shift of the emission peak with temperature. This is the first moment
of the spectrum,M1:

Emax = M1 =
∫

dE I (E)E (9)

whereI (E) is the normalized emission lineshape. The bandwidth is parametrized by the
standard dispersion of the spectrum,D, which is related to the second moment of the
spectrum,M2, as follows:

D =
√
M2 =

√∫
dE I (E)[E −M1]2. (10)

The emission intensity has been reproduced as the convolution of the emission
distribution with the overlap integral of the vibronic states in the ground and excited states,
Pnme = |Fnm4T2

4A2
|2. The probability of the radiative transition depends on the same vibronic

overlap integrals|Fnm4T2
4A2
| as for internal conversion, but different final states are selected

by the appropriate Dirac delta functions; for internal conversion (formula (2)) an energy
correspondence is required, whereas for radiative decay it is not. Finally, the Boltzmann
occupation factor,Bn, defined by equation (7), is used to determine the vibronic state
populations, and the final expression for the emission intensity becomes

I (Eexc, E) ∝ E3

τ

∑
n

∑
m

∫
dE4T2

2em(Eexc, E4T2
, T )Bn(T )P

nm
e δ[E − (En4T2

− Em4A2
)].

(11)

The absolute value of the radiative transition probability is considered to be proportional to
the inverse of the low-temperature emission decay time,τ , at 10µs [2].
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3.3. The lattice vibration potential

Since the values of the vibronic overlap integrals are essential for calculations of the emission
lineshape as well as for the non-radiative internal conversion rate, the shape of the potential
of the lattice vibrations is an important feature to discuss. Two types of lattice vibration
potential are discussed here. Both result in analytical solutions for the energy spectrum and
for the vibronic wave functions. As described above (section 3.1), the physicality of the
models can be determined after the frequency factor has been fitted to the data. The two
models for the vibration potentials are the usual harmonic well and the confined potential,
the latter representing the restrictions imposed by neighbouring ions and perhaps being more
physically realistic for the large motions of the ions necessary for internal conversion to
take place.

The harmonic potential,V , is represented by

V (Q) = 1

2
Q2. (12)

Here, the configuration coordinate,Q, is in units of
√
h̄/µω, whereω is the frequency of

the phonon mode andm is the effective mass of the ions involved in the vibrations.
The confinement-type potential is given by [13, 14]

V (Q) = [α(α − 1)]1/2

2
tan2{Q[α(α − 1)]−1/4} (13)

which can be approximated by the harmonic potential of equation (12) for smallQ. In
equation (13),Q is related to the real ionic displacement,R, by

Q = R(π/A)[α(α − 1)]1/4 (14)

where A is the size of the confinement or, in other words, the absolute limit to the
displacement of the ion. Thus,

[α(α − 1)]1/2 = ωµA2

h̄π2
. (15)

The vibronic wave functions for the potential given by equation (13) are

χn(Q) = sinα{Q[α(α − 1)]−1/4}C(α)n {cosQ[α(α − 1)]−1/4} (16)

where theC(α)n are Gugenbauer polynomials. The vibronic wave functions in equation (16)
correspond to the series of phonon energies,En, given by

En = [α(α − 1)]−1/2

[
n2

2
+ α

(
n+ 1

2

)]
. (17)

The difference between the confined and harmonic potentials can be related to the value
of a single parameter,α, or the physical parameter that corresponds to it: the confinement
size,A. Full details of the confinement potential are described elsewhere [13, 14], but of
importance here is the fact that the confinement potential yields a crossover of the energies of
the ground and excited electronic manifolds for much lower energy than the corresponding
harmonic potentials (see figure 1(b)). This results in much larger values of the overlap
integrals describing the non-radiative processes for the confined potential.

Analysis of the experimental emission spectrum yields some of the parameters of
the lattice potential. Regardless of which form of potential is used, the displacement of
the ground and excited potentials in the configuration coordinate diagram,1Q, can be
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determined from the energy separation of the maximum of the emission lineshape and the
zero-phonon line,Erel . The expressions for the two types of potential are

1Q =
√

2Erel
h̄ω

(18)

for the harmonic potential and

[α(α − 1)]1/2 tan2{1Q[α(α − 1)]−1/4} = 2
Erel

h̄ω
(19)

for the confined potential. The fits to the data that are carried out below require thatα is
of the order of a few hundred, and so expressions (18) and (19) yield similar values for
1Q. In the same way, the confined potential does not differ very much in form from the
harmonic potential for the first few tens of phonon excitations as can be seen for the curves
in figure 1(b). From equation (17) it can be seen that for the confined potential the energy
difference between successive vibronic energies increases as

1+ n+ 1/2

α3/2(α − 1)1/2
.

Thus, in this case, the parameter ¯hω corresponds only to the energy of the zero-
phonon excitation. In our calculations we have used ¯hω = 250 cm−1 for the harmonic
approximation, whilst a slightly smaller value, ¯hω = 240 cm−1, was necessary to fit the
confined potential to the spectroscopic data.

3.4. The crystal-field distribution

The distribution of the crystal field is critical to the calculations described in this paper
and therefore to a good understanding of the influence of substitutional disorder on the
optical properties of impurity ions. It is necessary to perform calculations to determine the
probabilities of radiative and non-radiative decay for all sites, the crystal-field parameters of
which have been shown to vary over a large range due to the effect of substitutional disorder
[2]. In order to model the behaviour it is initially assumed that a Gaussian distribution will
describe the total variation in the energy of the4T2 manifold, E4T2

, relative to its peak,
E0

4T2
, thus:

2tot (E4T2
) ∝ exp

[
− (E

4T2
− E0

4T2
)2

2σ 2

]
. (20)

For the fluorescing sites it has been shown [2] thatE4T2
is related to the electron–phonon

coupling energy,Erel , as follows:

Erel = E0
rel −K(E4T2

− E0
4T2
). (21)

Here,K is a constant which describes the changes in the electron–phonon coupling for
different sites within the distribution. WhenK is zero the electron–phonon coupling energy
remains constant, and any change in the crystal field is considered to be purely in terms of
its strength, causing no site-to-site shifts in the potential minima in configuration coordinate
space. WhenK is non-zero there is a dependence of the electron–phonon coupling onE4T2

.
This is explained physically in terms of distortions to the symmetry of the Cr3+ centre.
More distorted sites couple more strongly to asymmetric phonon modes, thus shifting the
potential minima in configuration coordinate space and reducing the energy. A value for
K of 1 represents variation exclusively in the electron–phonon coupling. Values closer to
1 than 0 have been found for all gallogermanates [2, 3] and a typical distribution is shown
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in figure 1(a). The value for CGGO was found to be 0.65 [2] and this value is used in all
of the crystal-field distributions that are considered in this paper.

An additional complication is the fact that the crystal is excited by monochromatic laser
light, so each site has its own excitation probability,Pexc, depending on its position in the
distribution. Thus the distribution of sites actually excited,2exc, is given by

2exc(Eexc, E4T2
) = 2tot (E4T2

)Pexc(EexcE4T2
). (22)

The probability of excitation,Pexc, is again given by the vibronic overlap integrals. For the
harmonic vibronic potentials this leads to a Pekarian band-shape:

Pexc(Eexc, E4T2
) = exp[−S(E4T2

)]
Sx(E4T2

)

x!
(23)

whereS(E4T2
) = Erel(E4T2

)/h̄ω is the effective Huang–Rhys factor which describes the
electron–lattice coupling for the individual site. For simplicity, the Pekarian has been used
for all of the potentials considered. The quantityx is thought of as being the number
of phonons released in de-exciting from the ground-electronic-state equilibrium position to
the excited-electronic-state equilibrium position whilst in the excited state (in the harmonic
approximation), but might generally be described by the quantity(Eexc − E4T2

)/h̄ω.
Two distributions of the weak-field sites have been considered. The first has been taken

directly from an analysis of the low-temperature emission spectra that took no account of
non-radiative decay. The second distribution has been assumed to be much broader with the
energies of the4T2 state extending to much lower values than for the former distribution.
The narrower distribution of sites is considered as being the higher-energy part of the broader
distribution, the justification being that the higher-energy sites are significantly less likely to
decay non-radiatively than the low-energy sites. The values of the parameters that describe
the distributions are listed in table 1.

Table 1. Parameters of the distribution of the crystal field. Broad distribution a was used for
the harmonic potential whilst b was used for the confined potential.

E0
max E0

4T2
σ

(cm−1) (cm−1) K (cm−1)

Previous distribution (narrow) [1]

3200 13 000 0.65 500

Broad distributions
a 3850 12 000 0.65 750
b 3650 12 000 0.65 750

Since we considered the properties of the whole system at different temperatures, the
shift of the energy of the4T2 state due to lattice expansion [15] should also be taken into
account. The shift of the peak of the absorption band between 300 K and 77 K was found to
be 0.5 cm−1 K−1, and this figure has been linearly extrapolated for the range of experiments
discussed here.

4. Results and discussion

To model the experimental data, four different lattice potentials have been used: the
harmonic potential and three confined potentials with confinement constants ofα = 250,
300 and 350. The calculations have been performed for both the original crystal-field
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Figure 2. (a) The squares of the vibronic overlap integrals which control the non-radiative
processes for various vibronic states of the excited electronic manifold for the potentials presented
in figure 1(b)). The dashed curve corresponds to the harmonic potential; solid curves 1, 2 and
3 correspond to the confinement potentials withα = 250, 300 and 350, respectively. (b) The
squares of the vibronic overlap integrals multiplied by the Boltzmann factor for the temperatures
150 K and 250 K. The line types are as indicated for (a).

distribution, that describes the emission spectrum [2], and the extended distribution. The
width of the extended distribution is treated as a free parameter, but slightly different widths
are required to optimize the harmonic and confined potentials, labelled a and b respectively
in table 1. All of the other crystal-field parameters are kept equal for both distributions.

The probability of the internal conversion process taking place is governed by the
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dependence of the values of the vibronic overlap integrals on the energy of the vibronic
quantum number of the initial state. In figure 2(a), for all four potentials considered, the
calculated squares of the overlap integrals,|Fnm4T2

4A2
|2, are presented as functions of the

initial vibronic state,n, for a value ofm such thatEn4T2
= Em4A2

. Figure 2(b) shows the same
four curves after multiplication by the Boltzmann factor (equation (7)) for two different
temperatures; they are thus proportional to the internal conversion probability according
to equation (6). The constant of proportionality is the frequency factor. Even though the
curves in figure 2(b) differ by orders of magnitude for the different potentials, the ratios
between them remain almost the same, so picking the appropriate frequency factor for each
will result in almost identical internal conversion probabilities. Under these circumstances,
if it is possible to fit one potential to the data, then it will be possible to fit them all,
though the frequency factor will vary between models by several orders of magnitude.
As the frequency factor is determined by the spin–orbit matrix element, which is known
reasonably well, it is easy to determine the feasibility of each potential model used.

Figure 3. The temperature dependence of the maximum of the emission spectra of CGGO:Cr3+.
Circles correspond to the experimental data. Curves correspond to the computer-simulated
dependencies: dashed curves were obtained for the harmonic approximation to the ionic vibration
(small dashes correspond to the narrow distribution, large dashes correspond to the broad
distribution a—see table 1); solid curves were obtained for the confinement-type potential,
for broad crystal-field distribution b, forα = 250, α = 300 andα = 350, with the other
parameters as listed in table 1. As the solid curves are almost identical, they are not individually
distinguished.

The experimental results for the shift of the peak of the band with wavelength are
presented in figure 3 together with the results of several fits. The dashed curves correspond
to results obtained for the harmonic potential using the narrow (small dashes) and broad
(large dashes) distributions. Solid curves correspond to best fits for confined potentials.

When the narrow distribution of sites is used, small shifts of the emission peak with
increasing temperature result. Only one curve is shown for the narrow distribution but, for
both types of potential, the majority of sites decay radiatively. Even at higher temperatures
the non-radiative transitions remain weak, so the effective emission distribution,2em

(equation (8)), does not change significantly, and the shift of the emission peak with
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temperature is small. The narrow crystal-field distribution cannot reproduce the experimental
dependence of the emission peak on temperature for any values of the frequency factor for
any reasonable potentials. This distribution will therefore not be discussed any further.

Table 2. Parameters pertaining to the simulation of the dependence of the peak emission on
temperature.

Matrix element
Frequency factor |〈ϕ4T2

|H ′|ϕ4A2
〉|

Curve Potential type Field distribution (s−1) (cm−1)

Dashed Harmonic Narrow [1] 3× 1014 250
Large-dashed Harmonic Broad a 1× 1018 14 500

Solid Confinement
α = 350 (A = 6.6 Å) Broad b 7× 1014 380
Confinement
α = 300 (A = 6.1 Å) Broad b 2.4× 1014 220
Confinement
α = 250 (A = 5.6 Å) Broad b 5× 1013 100

Figure 4. The weak-crystal-field site distribution. Dashed curves represent the distribution of
the sites active in the emission2em(Eexc , E4T2

, T ); solid curves represent the distribution of
the excited ions2exc(Eexc , E4T2

). Calculations have been performed for the confined potential
with α = 300, for the broad crystal-field distribution b (the other parameters are as listed in
tables 1 and 2).

In the broader crystal-field distribution, only the high-field-tail sites have quantum
efficiencies close to 1. For both types of potential the slopes obtained reproduce the
temperature dependence of the emission peak well (figure 3). The large shift of the emission
peak is the result of significant changes in the distribution of strongly radiative sites with
temperature as described by equation (8). In figure 4,2em is shown in comparison with
2exc for various temperatures. The solid lines represent the shift of2exc as the lattice
expands with temperature and the dashed lines show the subset of excited sites that decay
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radiatively. In the lower-energy part of the distribution there is very little contribution to the
emission since the quantum efficiency is close to zero at all temperatures. The sites from
the higher-energy tail of the distribution always decay radiatively since, for stronger crystal-
field and weaker electron–lattice coupling, the internal conversion processes are negligible.
The sites that are responsible for the temperature shift of the emission peak are those that
are intermediate in energy and have radiative and non-radiative probabilities of about the
same order of magnitude, the dominant process depending on temperature. In the low-
temperature limit, the effective emission distribution is similar to the distribution obtained
when considering only radiative decay [2].

The curves in figure 4 correspond to the confined potential withα = 300, requiring a
frequency factor of 2.4× 1014 s−1. As discussed above, similar results were also obtained
for each of the potentials considered by choosing a different value for the frequency factor,
and these are summarized in table 2. As discussed in reference [6], the absolute value
of the frequency factor is related to the physical phenomenon responsible for the non-
radiative processes. For both of the interactions discussed in this paper, the frequency
factor is not larger than 1013–1015 s−1. The value of 1018 s−1 obtained for the harmonic
potential is therefore unrealistic, and the conclusion is that the confined potential is the better
representation. All three of the confined potentials fall within the limits of credibility for the
frequency factor required, and no firm conclusion is drawn as to the precise parameters that
describe the potential. It is sufficient to say that the value ofα is 300±50 and the frequency
factor is of the order of 1014. These values may be used to calculate the confinement size
according to equation (15), and the results are also shown in table 2 assuming the effective
mass to be equal to that of six oxygen ions and taking the phonon energy to be 240 cm−1.
The confinement size is 6̊A, which is considered reasonable for a Cr3+–ligand distance of
2 Å.

Figure 5. Simulated and experimental emission spectra for two different temperatures. Dashed
lines correspond to the simulation using the harmonic potential, solid lines to that obtained using
the confined potential withα = 300. Solid bold lines represent the experimental spectra.

It is clear from figure 4 that many fewer sites contribute to the luminescence at higher
temperatures. As a final check on the validity of the models put forward in this paper,
the fluorescence band is constructed at two temperatures using the calculations outlined
above, and these are presented in figure 5. The calculations predict a strong quenching
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of the luminescence, but less than that observed experimentally. There are two possible
explanations for this discrepancy. The first refers to the specific shape of the tails of the
crystal-field distribution that has been assumed to be Gaussian. The quenching of the
luminescence is very sensitive to the precise crystal-field distribution—in particular the
wings of the distribution. Some of the crystal-field distribution parameters, such asK,
have been transposed directly from calculations made on the low-temperature emission
spectrum and may therefore be somewhat inaccurate, thus distorting the potential wells in
configuration coordinate space. As discussed above, small changes in the position of a
potential well lead to a large change inEnr and thus to very large changes in the internal
conversion rate. A second explanation is the existence of additional non-radiative processes
that affect all of the sites in the same way. This additional process would cause further
fluorescence quenching with increasing temperature without changing the position of the
emission peak.

5. Conclusions

The radiative and non-radiative decay characteristics of chromium-doped calcium
gallogermanate have been explained in terms of the influence of internal conversion on
a broad crystal-field distribution. The temperature-dependent emission characteristics can
only be described by using a confinement potential. This finding is physically realistic
as very large vibrations, equivalent to tens of phonons, are necessitated by direct transfer
from the excited state to the ground state, and this implies substantial ionic motion. It is
physically realistic to expect that such large motion should be restricted by neighbouring
ions.

It is hoped that this study will aid the development of gain media that may be designed
to have similarly large tuning ranges without the thermal difficulties that gallogermanates
experience. The broadening in gallogermanates occurs as a result of substitutional disorder
causing variation in the magnitude of the Huang–Rhys parameter, but this is also the
principal cause of the strong non-radiative decay. To find broadened transitions without
non-radiative decay it may be necessary to search for materials in which the crystal-field
strength varies but the Huang–Rhys factor remains at a relatively low value.
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